Evolving geometrical and material properties of fault zones in a damage rheology model
نویسندگان
چکیده
[1] We discuss numerical simulations of evolving fault zone structures in a 3-D lithospheric model with a seismogenic crust governed by a damage rheology that accounts for large strain associated with permanent brittle deformation. Results for the initial propagation of an existing narrow damage zone subjected to oblique loading exhibit strong asymmetry of the evolving damage with respect to the initial fault orientation and predict out-of-plane directions of the propagating damage zones. The orientations of the simulated damage zones agree with analytical expectations based on fracture mechanics for the directions of wing cracks generated at the tips of a crack under mixed mode loading. Lithosphere-scale numerical simulations for the long-term evolution of a large strike-slip fault zone produce initially a system of stepping en echelon segments associated with the asymmetric generation of new damage zones. The simulated fault zone segments evolve with continuing deformation to a throughgoing localized structure. Large-scale perturbation in the geometry of the Moho interface together with the regional heat regime can reduce considerably the degree of localization of the fault zone structure and the associated deformation fields.
منابع مشابه
Mechanics, Structure and Evolution of Fault Zones
The brittle portion of the Earth’s lithosphere contains a distribution of joints, faults and cataclastic zones that exist on a wide range of scale-lengths and usually have complex geometries including bends, jogs, and intersections. The material around these complexities is subjected to large stress concentrations, which lead during continuing deformation to the generation of new fracture and g...
متن کامل3D stochastic rock fracture modeling related to strike-slip faults
Fault zones and fault-related fracture systems control the mechanical behaviors and fluid-flow properties of the Earth’s crust. Furthermore, nowadays, modeling is being increasingly used in order to understand the behavior of rock masses, and to determine their characteristics. In this work, fault zones and fracture patterns are reviewed, and also comprehensive studies are carried out on the fr...
متن کاملReview of Damage Tolerant Analysis of Laminated Composites
With advanced composites increasing replacing traditional metallic materials, the material inhomogeneity and inherent anisotropy of such materials lead to not only new attributes for aerospace structures, but also introduce new technology to damage tolerant design and analysis. The deleterious effects of changes in material properties and initiation and growth of structural damage must be addre...
متن کاملSeismic Fault Rheology and Earthquake Dynamics
As preparation for this Dahlem Workshop on The Dynamics of Fault Zones, specifically on the subtopic “Rheology of Fault Rocks and Their Surroundings,” we addressed critical research issues for understanding the seismic response of fault zones in terms of the constitutive response of fault materials. This requires new concepts and a host of new observations and experiments to document material r...
متن کاملEffect of Carbon Nanotube Geometries on Mechanical Properties of Nanocomposite Via Nanoscale Representative Volume Element
Predicting the effective elastic properties of carbon nanotube-reinforced nanocomposites is of great interest to many structural designers and engineers for improving material and configuration design in recent years. In this paper, a finite element model of a CNT composite has been developed using the Representative volume element (RVE) to evaluate the effective material properties of nanocomp...
متن کامل